# 

#### **Characterisation of 3D-printable thermoplastics for proton therapy**

Mariana Bento<sup>1,2</sup>, Virginia Marin Anaya<sup>3</sup>, Esther Baer<sup>3</sup>, Hannah Cook<sup>2,1</sup>, Ana Lourenco<sup>2,1</sup>, Mohammad Hussein<sup>2,1</sup>, Andy Nisbet<sup>1</sup>, and Catarina Veiga<sup>1</sup>

<sup>1</sup>University College London, London, United Kingdom. <sup>2</sup>National Physical Laboratory, Teddington, United Kingdom. <sup>3</sup>University College London Hospitals NHS Foundation Trust, London, United Kingdom.

> PPRIG Workshop 9<sup>th</sup> – 10<sup>th</sup> November 2023

## **Background and Motivation**

- Cancer treatments evolved alongside with advancements in technology
- More complex treatment techniques come with new sources of uncertainties
- Quality Assurance (QA) techniques are required to ensure treatments are delivered in a safe and accurate manner

With the **new advances** in treatment delivery systems, **new appropriate QA tools** need to be developed





Seo et. al., 2019

#### **Background and Motivation** Treatment Planning Pathway

Plan CT scan

- Tumour contours
- Tissues radiological properties
- ➤ HU density
- HU relative electron density (RED)
- HU relative stopping power (RSP)



#### **Background and Motivation** Treatment Planning Pathway

#### Plan CT scan

- Tumour contours
- Tissues radiological properties
- ➤ HU density
- HU relative electron density (RED)
- HU relative stopping power (RSP)

Dose distribution calculations

- Treatment Planning System (TPS)
- RED for photons
- RSP for protons



#### **Background and Motivation** Treatment Planning Pathway

#### Plan CT scan

- Tumour contours
- Tissues radiological properties
- ➤ HU density
- HU relative electron density (RED)
- HU relative stopping power (RSP)

Dose distribution calculations

- Treatment Planning System (TPS)
- RED for photons
- RSP for protons

Dose delivery

#### Patient positioning



#### Background and Motivation End-to-end QA





Plan CT scan

Dose distribution calculations



- Most of the existing tools for QA are not wellsuited for proton beams
- The rising number of proton beam delivery facilities demands the development of proton specific end-to-end QA tools



#### Additive Manufacturing for Radiotherapy Applications

- There has been an increased interest in using additive manufacturing for creating quality assurance tools in radiotherapy
- Easy customization, high accuracy, lower production costs
- 3D-printing parameters need to be tuned to optimize the printing process of thermoplastics for end-to-end QA applications
- ➤ Layer Height
- Printing Speed
- Extruder Temperature
- ➢ Retraction Distance
- Printing Speed
- Extrusion Multiplier









#### Aim

- Provide guidelines on the use of 3D-printing technology optimisation of 3D-printing settings for end-to-end QA applications in radiotherapy
- Under these guidelines, evaluate the radiological properties of thermoplastic materials and their suitability to be used in end-to-end QA for proton therapy

## **Materials and Methods**

- Six thermoplastic materials were selected: PLA, ABS, PETG, PMMA, HIPS and Stonefil (PLA mixed with stone powder)
- The Raise3D pro2 plus 3D-printer was used
- 3D-printing parameters were optimised
- 10x10x1 cm<sup>3</sup> and 10x10x2 cm<sup>3</sup> slabs were printed for each thermoplastic

Table 1: Vendor density and selected printing parameters for each thermoplastic under investigation.

|          | Vendor                          | Density<br>(g/cm³) | Extrusion<br>Multiplier | Retraction<br>Distance (mm) | Extruder<br>Temperature (°C) | Heated Bed<br>Temperature (°C) |
|----------|---------------------------------|--------------------|-------------------------|-----------------------------|------------------------------|--------------------------------|
| PLA      | Raise3D Premium                 | 1.20               | 0.90                    | 1.5                         | 210                          | 60                             |
| ABS      | Fillamentum Extrafill           | 1.04               | 0.90                    | 1.5                         | 230                          | 100                            |
| PETG     | 3DJAKE                          | 1.27               | 0.85                    | 3.0                         | 235                          | 70                             |
| РММА     | Mitsubishi Chemicals<br>3Diakon | 1.14               | 0.95                    | 1.5                         | 255                          | 107                            |
| HIPS     | Spectrum HIPS-X                 | 1.05               | 0.95                    | 1.5                         | 240                          | 95                             |
| Stonefil | FormFutura                      | 1.70               | 1.05                    | 2.0                         | 230                          | 60                             |



## **Materials and Methods**

- Average RSP values were acquired for each material via two different methods:
  - **1. Range Measurements**
  - Girrafe Detector, Ion Beam Applications SA
  - 210 MeV proton pencil-beam (ProBeam, Varian Medical Systems)







## **Materials and Methods**

- Average RSP values were acquired for each material via two different methods:
- 2. CT-scan prediction with calibration curves
- AnyScan TRIO®
- Philips 7500





Table 2: Average Hounsfield Unit (HU) values, and standard deviations, derived for each material through CT-scans, considering the different slab thicknesses.

|                          | HU      |           |          |         |           |          |
|--------------------------|---------|-----------|----------|---------|-----------|----------|
|                          | PLA     | ABS       | PETG     | PMMA    | HIPS      | Granite  |
| AnyScan TRIO®            | 58 ± 17 | -90 ± 12  | -34 ± 19 | 56 ± 18 | -134 ± 16 | 735 ± 28 |
| Philips Spectral<br>7500 | 48 ± 14 | -107 ± 10 | -58 ± 23 | 33 ± 22 | -157 ± 14 | 836 ± 28 |





Table 3: Relative Stopping Power (RSP) values obtained experimentally via range and CT-based measurements.

|          | RSP               |                            |          |                           |          |  |  |
|----------|-------------------|----------------------------|----------|---------------------------|----------|--|--|
| Material | Measured          | Predicted<br>AnyScan TRIO® | Diff (%) | Predicted<br>Philips 7500 | Diff (%) |  |  |
| PLA      | 1.064 ± 0.005     | 1.056 ± 0.013              | 0.75     | 1.034 ± 0.008             | 2.91     |  |  |
| ABS      | $0.959 \pm 0.002$ | 0.941 ± 0.013              | 1.88     | 0.942 ± 0.006             | 1.77     |  |  |
| PETG     | $1.019 \pm 0.006$ | $0.996 \pm 0.014$          | 2.26     | 0.970 ± 0.013             | 4.81     |  |  |
| PMMA     | $1.083 \pm 0.004$ | 1.058 ± 0.015              | 2.31     | 1.025 ± 0.013             | 5.36     |  |  |
| HIPS     | $0.914 \pm 0.007$ | 0.896 ± 0.016              | 1.97     | 0.913 ± 0.009             | 0.11     |  |  |
| StoneFil | 1.407 ± 0.003     | 1.439 ± 0.017              | 2.27     | 1.391 ± 0.012             | 1.14     |  |  |

Table 3: Relative Stopping Power (RSP) values obtained experimentally via range and CT-based measurements.

|          |               |                            | RSP      |                           |          |
|----------|---------------|----------------------------|----------|---------------------------|----------|
| Material | Measured      | Predicted<br>AnyScan TRIO® | Diff (%) | Predicted<br>Philips 7500 | Diff (%) |
| PLA      | 1.064 ± 0.005 | 1.056 ± 0.013              | 0.75     | $1.034 \pm 0.008$         | 2.91     |
| ABS      | 0.959 ± 0.002 | 0.941 ± 0.013              | 1.88     | $0.942 \pm 0.006$         | 1.77     |
| PETG     | 1.019 ± 0.006 | 0.996 ± 0.014              | 2.26     | 0.970 ± 0.013             | 4.81     |
| PMMA     | 1.083 ± 0.004 | 1.058 ± 0.015              | 2.31     | 1.025 ± 0.013             | 5.36     |
| HIPS     | 0.914 ± 0.007 | 0.896 ± 0.016              | 1.97     | 0.913 ± 0.009             | 0.11     |
| StoneFil | 1.407 ± 0.003 | 1.439 ± 0.017              | 2.27     | 1.391 ± 0.012             | 1.14     |

Table 3: Relative Stopping Power (RSP) values obtained experimentally via range and CT-based measurements.

|          | RSP               |                            |          |                           |          |  |  |
|----------|-------------------|----------------------------|----------|---------------------------|----------|--|--|
| Material | Measured          | Predicted<br>AnyScan TRIO® | Diff (%) | Predicted<br>Philips 7500 | Diff (%) |  |  |
| PLA      | $1.064 \pm 0.005$ | 1.056 ± 0.013              | 0.75     | 1.034 ± 0.008             | 2.91     |  |  |
| ABS      | 0.959 ± 0.002     | 0.941 ± 0.013              | 1.88     | $0.942 \pm 0.006$         | 1.77     |  |  |
| PETG     | 1.019 ± 0.006     | 0.996 ± 0.014              | 2.26     | 0.970 ± 0.013             | 4.81     |  |  |
| PMMA     | 1.083 ± 0.004     | 1.058 ± 0.015              | 2.31     | 1.025 ± 0.013             | 5.36     |  |  |
| HIPS     | 0.914 ± 0.007     | 0.896 ± 0.016              | 1.97     | 0.913 ± 0.009             | 0.11     |  |  |
| StoneFil | 1.407 ± 0.003     | 1.439 ± 0.017              | 2.27     | 1.391 ± 0.012             | 1.14     |  |  |

## **Discussion and Conclusions**

- Most filaments were below the 5% difference between measured and calibration-curve predicted values
- 3D-printable thermoplastics are promising tissue equivalents for proton therapy applications, specifically for end-to-end QA techniques
- ABS and HIPS are good candidates to be used as soft tissue equivalents
- Stonefil is a good candidate to be used as bone substitute
- 3D-printing shows to be a very suitable manufacturing technique for end-to-end QA applications in radiotherapy

#### **UC**

### Limitations

- Additive manufacturing is associated with limitations in the model construction, which includes:
- > The presence of air gaps within the model's infill
- Infill density not perfectly homogeneous
- Surface finishing may be of lower quality
- Variation in printing accuracy



- Limited choice of commercially available filaments of thermoplastic materials
- Plastic waste and long-term deterioration from radiation exposure



# Thank you !

rmapben@ucl.ac.uk







Royal Academy of Engineering

